Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232842

RESUMO

Rhizobia, which enter into symbiosis with legumes, can also interact with non-legumes and promote plant growth. In this paper, we explored the effects of nickel (Ni, 200 µM) on Arabidopsis thaliana (Col-0) inoculated with plant growth-promoting (PGP) rhizobia nodulating ultramafic Anthyllis vulneraria. The isolated PGP strains tolerant to Ni were identified as Rhizobium sp. and Bradyrhizobium sp. The isolates highly differed in their PGP abilities and Ni resistance. Without Ni-stress, the plants inoculated with most isolates grew better and had higher photosynthetic efficiency than non-inoculated controls. Nickel treatment increased Ni concentration in inoculated plants. Plant growth, leaf anatomy, chloroplast ultrastructure, efficiency of photosynthesis, and antioxidant defense system activity were significantly impaired by Ni, however, the majority of these effects were diminished in plants inoculated with the most effective PGP rhizobia. Real-time PCR revealed an increased expression level of genes involved in auxin and gibberellin biosynthesis in the inoculated, Ni-treated plants, and this may have improved shoot and root growth after inoculation with effective isolates. Our results also suggest a positive correlation between Ni-stress parameters and antioxidant defense system activity, and also between the effectiveness of photosynthesis and plant growth parameters. We showed that the selected rhizobia, naturally nodulating Anthyllis on Ni-rich ultramafic soils can promote Arabidopsis growth and increase plant tolerance to Ni by improving different physiological and biochemical mechanisms.


Assuntos
Arabidopsis , Lotus , Rhizobium , Antioxidantes/metabolismo , Bactérias , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Níquel/metabolismo , Níquel/farmacologia , Rhizobium/metabolismo , Solo/química , Microbiologia do Solo , Simbiose
2.
Syst Appl Microbiol ; 44(4): 126228, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34265499

RESUMO

The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.


Assuntos
Bradyrhizobium , Lupinus , Filogenia , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Florestas , Lupinus/microbiologia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Microbiologia do Solo , Simbiose
3.
Syst Appl Microbiol ; 44(3): 126203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33857759

RESUMO

In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.


Assuntos
Bradyrhizobium , Fabaceae , Florestas , Pradaria , Filogenia , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Brasil , DNA Bacteriano/genética , Fabaceae/microbiologia , Genes Bacterianos , RNA Ribossômico 16S/genética , Rizosfera , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose
4.
Genes (Basel) ; 9(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538303

RESUMO

The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. This indicates that the capacity for nodulation of Genisteae spp. has evolved independently in various symbiotic gene clades, and that it has not been a long-multi-step process. The exception is Bradyrhizobium Clade II, which unlike other clades comprises strains that are specialized in nodulation of Genisteae, but also Loteae spp. Presumably, Clade II represents an example of long-lasting co-evolution of bradyrhizobial symbionts with their legume hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...